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ABSTRACT Zinc is one of the most important
metal ions found in proteins performing specific
functions associated with life processes. Coordina-
tion geometry of the zinc ion in the active site of
the metalloprotein–ligand complexes poses a chal-
lenge in determining ligand binding affinities accu-
rately in structure-based drug design. We report
here an all atom force field based computational
protocol for estimating rapidly the binding affin-
ities of zinc containing metalloprotein–ligand com-
plexes, considering electrostatics, van der Waals,
hydrophobicity, and loss in conformational entropy
of protein side chains upon ligand binding along
with a nonbonded approach to model the interac-
tions of the zinc ion with all the other atoms of the
complex. We examined the sensitivity of the bind-
ing affinity predictions to the choice of Lennard-
Jones parameters, partial atomic charges, and
dielectric treatments adopted for system prepara-
tion and scoring. The highest correlation obtained
was R2 = 0.77 (r = 0.88) for the predicted binding
affinity against the experiment on a heterogenous
dataset of 90 zinc containing metalloprotein–ligand
complexes consisting of five unique protein targets.
Model validation and parameter analysis studies
underscore the robustness and predictive ability of
the scoring function. The high correlation obtained
suggests the potential applicability of the methodol-
ogy in designing novel ligands for zinc–metallopro-
teins. The scoring function has been web enabled
for free access at www.scfbio-iitd.res.in/software/
drugdesign/bapplz.jsp as BAPPL-Z server (Binding
Affinity Prediction of Protein–Ligand complexes
containing Zinc metal ions). Proteins 2007;67:1167–
1178. VVC 2007 Wiley-Liss, Inc.
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INTRODUCTION

Metal ions (Zn2þ, Mg2þ, Ca2þ, Mn2þ, Naþ, Kþ, etc.) per-
form a wide variety of specific functions associated with
life processes. They are involved in respiration, triggering
cellular responses, electron transfer, catalytic reactions

and stabilizing the structure of folded proteins,1,2 and so
forth. One of the most common transition metals found in
enzymes is zinc. Zinc containing proteins play a key role
in the biosynthesis and metabolism of a number of bioac-
tive peptides and have been implicated in a variety of dis-
ease states such as cancer, arthritis, and multiple sclero-
sis.3 Carbonic anhydrase (CA),4 carboxypeptidase A (CPA),5

alcohol dehydrogenase (AD),6 matrix metalloproteinase
(MMP),7 and thermolysin (TL)8 are some of the zinc–met-
alloproteinases9 investigated thoroughly for their role in
various biological processes. As promising therapeutic drug
targets, zinc–metalloproteinases have attracted much in-
terest in recent years.

Regardless of the metal and its precise pattern of liga-
tion to the protein, there is a common qualitative fea-
ture to the binding site: the metal is ligated by a shell of
hydrophilic atomic groups (containing oxygen, nitrogen,
or sulfur atoms) and this hydrophilic shell is embedded
within a larger shell of hydrophobic atomic groups (con-
taining carbon atoms).10,11 Zn2þ generally exists in 4-, 5-,
or 6- coordinate geometry, with ligands such as, His,
Cys, Asp, Glu, substrate/inhibitor, and water mole-
cules.12 Modeling of the ligand binding to the zinc ion is
quite problematic because of polarization, charge trans-
fer, multiple coordination geometries, and lack of accu-
rate force fields.13–16 These limitations have hindered
structure-based drug design studies17,18 aimed at design-
ing novel potent and selective ligands for zinc–metallo-
proteins. There are two basic ways to model the zinc ion
using a purely classical potential function: the bonded
model and the nonbonded model. In the bonded models,
explicit bond and angle terms are introduced into the
potential energy function to account for interactions be-
tween the metal and the protein and ligand atoms.19–22
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This model suffers from certain limitations viz. the over-
all conformational flexibility of the metal binding site
gets restricted and the multiplicity of zinc binding
modes becomes difficult to treat. In the alternative non-
bonded model, only the van der Waals and electrostatic
terms are included for the zinc ion.23 This avoids the
conformational restrictions of the bonded model, but
encounters difficulty in treating the strong electrostatic
interactions of the divalent zinc ion.24 Several examples
exist in the literature where bonded or nonbonded mod-
els have been used for zinc protein simulations.25,26

Besides the aforementioned approaches, quantum
mechanics (QM)/molecular mechanics methods have also
been used to study the structural and functional roles of
zinc bound to protein residues.27–29

Computational approaches that ‘‘dock’’ small molecules
into the structures of macromolecular targets and
‘‘score’’ their potential complementarity to binding sites
are widely used in hit identification and lead optimiza-
tion.30 Computational protocols that utilize the receptor
structure information for estimating binding affin-
ities31,32 can be classified into five major classes with
respect to their methodological background: (1) molecu-
lar simulation based approaches;33,34 (2) empirical/force
field/additivity based approaches;35,36 (3) knowledge-
based approaches;37 (4) QM-based scoring functions38;
and (5) hybrid approaches.39,40 Comparative evaluations
of different docking programs41 in combination with var-
ious scoring functions for their applications in virtual
screening have been carried out and results show that
many of the popular scoring functions are able to select
correct docked from misdocked structures, but correla-
tion with experimental binding affinities particularly of
metalloprotein–ligand complexes still remains a major
limiting factor in virtual screening for drug discovery.42–44

Despite the hurdles, several groups have reported meth-
odologies to predict the binding affinities of zinc contain-
ing metalloprotein–ligand complexes (Table I). Hu et al.
have carried out docking and scoring studies on 40 zinc–
metalloproteinase complexes using the most popular
available scoring functions and found R2 ¼ 0.58 (r ¼
0.76) to be the best correlation obtained between experi-
mental and predicted binding affinities.52

In this study, we report a computational protocol for a
reliable prediction of the binding affinities of zinc con-
taining metalloprotein–ligand complexes. We have exam-
ined 2 different charge derivation methods for the ligand
and the zinc ion, 2 different van der Waals parameters
for the zinc ion, 3 different dielectric treatments in the
energy minimization for complex preparation, and 9 dif-
ferent electrostatic treatments in the scoring function,
adding to a total of 108 different protocols and arrive at
the most theoretically consistent computational protocol
that gives the best correlation for the predicted binding
affinities of zinc containing metalloprotein–ligand com-
plexes against experiment. The protocol presented has
been validated on a heterogenous dataset of 90 com-
plexes comprising five unique targets and is fast enough
to be used in virtual screening protocols.

MATERIALS AND METHODS

Scoring Function

The scoring function employed here considers the non-
bonded energy of a protein–ligand complex as a sum of
electrostatics, van der Waals, hydrophobicity, and loss in
conformational entropy of protein side chains and has
already been validated on a dataset of 161 nonmetallo
protein–ligand complexes giving a correlation of R2 ¼
0.85 (r ¼ 0.92) between the experimental and the pre-
dicted binding affinities.53,54

DG0 ¼aðETelÞþbðETvdwÞþ
X22

A¼1

rADALSAþkðDSCRÞþd ð1Þ

A zinc containing metalloprotein–ligand complex is di-
vided into three parts; the zinc ion (z), the protein (p),
and the ligand (l). The ligand (l) here refers to the small
molecule in the active site of the metalloprotein, which
is in noncovalent interaction with the protein residues
and forms one or two coordinate bonds with the zinc ion.
The total electrostatics (ETel) and total van der Waals
(ETvdw) are computed as a combination of [I] þ [II]
described later. Electrostatic energy is computed via
Coulomb’s law using a dielectric function, while the van

TABLE I. Some Methodologies Reported in the Literature for Estimating the Binding Affinities of
Zinc Containing Metalloprotein–Ligand Complexes

S. no. Contributing group Method
Metalloprotein

studied
Training

set
Test
set R2

1. Donini et al.45 MM-PBSA MMP — 6
2. Raha et al.46 QM CA and CPA — 23 0.69
3. Toba et al.47 FEP MMP — 2 —
4. Hou et al.48 LIE MMP — 15 0.85
5. Hu et al.49 Force field MMP — 14 0.50
6. Rizzo et al.50 MM-GBSA MMP — 6 0.74
7. Khandelwal et al.51 QM/MM MMP — 28 0.90
8. Present work Force field/empirical CA, CPA, MMP,

AD, and TL
40 50 0.77

R2 is the correlation coefficient obtained on the test set for the predicted binding affinities against the experiment.
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der Waals energy is computed using a (12, 6) Lennard-
Jones potential.
[I] (p � l) is the energy between the protein (p) and

the ligand (l) atoms excluding the zinc ion (z). These are
denoted as electrostatics I (elp�l) and van der Waals I
(vdwp�l).
[II] (z � pl) is the energy between the zinc ion (z) and

the rest of the complex, that is protein and ligand (pl).
These are denoted as electrostatics II (elz�pl) and van der
Waals II (vdwz�pl). The subscript pl here refers to all
those atoms of the protein (p) and the ligand (l) that are
not coordinately bonded to the zinc ion, that is all the pro-
tein and ligand atoms which are at a distance >2.7 Å
from the zinc ion. We have adopted the nonbonded model
from the work of Stote and Karplus23 to model the inter-
actions (electrostatics and van der Waals) of the zinc ion
with the protein and the ligand atoms (z � pl).

ETel ¼
X

elp�l þ elz�pl

ETvdw ¼
X

vdwp�l þ vdwz�pl

The hydrophobic contribution to binding is computed
using a modified version of Eisenberg-Mclachlan55 model.
The limitation of five basic atom types in the Eisenberg-
Mclachlan model is overcome by combining the atom
types in AMBER force field56 for proteins/nucleic acids
with the atom types in GAFF57 force field for small mole-
cules. This gives a common set of 22 atom types (Table
VI) with the advantage that any atom of the protein or
ligand can be defined using this set ensuring transferabil-
ity of derived parameters for organic and biological mole-
cules. For the present study, we have introduced a new
atom type for the zinc ion with its cavity radius adopted
from the work of Rashin and Honig.58 The zinc ion is con-
sidered as a part of the protein during the surface area
calculations. Also in our approach, we consider the loss in
surface area of the individual atoms upon binding, reflect-
ing the changes in binding process. Total surface area of
an atom type is obtained by summing up all the contribu-
tions from that atom type. The net loss in surface area of
an atom type upon binding is computed as:

DALSA ¼
X

Acomplex �
X

Aprotein �
X

Aligand

where, DALSA is the net loss in surface area of an atom
type A. Acomplex, Aprotein, and Aligand are the total surface
areas of atom type A in the complex, the protein, and
the ligand respectively.
DSCR is the energy contribution due to loss in conforma-

tional entropy of protein side chains59 upon ligand bind-
ing. We have utilized an empirical scale of side chain con-
formational entropy (�TDS) developed by Pickett and
Sternberg60 and relative accessibility as a measure of the
loss in conformational entropy of protein side chains upon
protein–ligand binding. Computational details for hydro-
phobicity and DSCR have been explained earlier.53

DG0 in Eq. (1) is the standard free energy of binding
and a, b, r, and k are the regression coefficients for the
electrostatics, van der Waals, hydrophobicity, and en-
tropy terms respectively obtained via a multiple linear
regression analysis with the scoring function. ETel,
ETvdw, DALSA, and DSCR serve as independent variables
and the experimental binding free energy (DG0) serves
as a dependent variable.

Dataset Description

There are about 3500 proteins, complexed with
ligands, substrate, prosthetic groups, and metal ions in
the protein databank (RCSB).61 For the present study,
we focused on the zinc containing metalloprotein–ligand
complexes for which experimental binding free energies
are available in the public domain databases such as
LPDB,62 PLD,63 AffinDB,64 and PDBbind65 and pre-
pared a dataset of 90 complexes (Tables IA and IB, sup-
plementary information) as described in the dataset
preparation section. A description of the dataset with
the observed limits for various descriptors/physicochemi-
cal properties is given in Table II. Table II shows that
the dataset in consideration is heterogeneous enough
with respect to the ligand, protein, and complex descrip-
tors/physicochemical properties to facilitate a rigorous
evaluation of the performance of the proposed protocol
and its extensions to other systems.

We have analyzed 90 zinc containing metalloprotein–
ligand complexes, comprising five unique targets: 35 CA,
7 CPA, 32 MMP, 11 TL, and 5 AD systems. In each com-
plex, zinc is coordinately bonded to amino acid residues
and ligand with a distinct coordination geometry, called
here, the zinc binding motif (ZBM) (see Fig. 1). The Zn

TABLE II. Some Physicochemical Properties With
Their Observed Limits in the 90 Zinc Containing

Metalloprotein–Ligand Complex Dataset
Considered in This Study

S. no.
Descriptor/physicochemical

property Limits

Ligand
1. Number of rotatable bonds 1–17
2. Hydrogen bond donors 0–8
3. Hydrogen bond acceptors 1–10
4. Net charge on ligand 0 – (�)2
5. Molecular weight (Daltons) 74–1989
6. Total number of atoms 9–71

Protein
7. Number of unique proteins 5
8. Number of residues 242–374

Zinc
9. Net charge on zinc binding motif (�)1 – (þ)2
10. Net charge on zinc (þ)0.19 – (þ)1.53
11. Number of atoms

coordinate bond to zinc
3–5

Complex
12. Experimental binding

affinity (kcal/mol)
(�)19.03 – (�)2.88

13. Resolution (Å) 1.4–2.9
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binding motif for CA is Zn-HIS-HIS-HIS-DRG, for CPA
it is Zn-HIS-HIS-GLU-DRG, for MMP it is Zn-HIS-HIS-
HIS-DRG, for TL it is Zn-HIS-HIS-GLU-DRG, and for
AD it is Zn-HIS-CYS-CYS-DRG, where DRG refers to
the ligand. Although (CA and MMP) and (CPA and TL)
have similar ZBMs in terms of amino acid residues,
their atomic positions of HIS (ND1/NE2) where the zinc
coordination takes place makes them distinct. In Table

III, we summarize the ZBM for all the five categories of
proteins in terms of amino acid residues, their atomic
positions (NE2/ND1 atom of HIS, OE1/OE2 atom of
GLU, and SG atom of CYS), net charge on each residue,
and the ligand atoms that are in coordinate bond with
the zinc ion. HIS with its dual protonation states is the
most abundant amino acid found in ZBM when com-
pared to GLU and CYS. Zinc occurs in four or five coor-

Fig. 1. ZBMs for the five categories of metalloproteins studied. A: CA (carbonic anhydrase). B: CPA
(carboxypeptidase A. C: MMP (matrix metalloproteinase. D: TL (thermolysin). E: AD (alcohol dehydrogen-
ase). The functional group/atom of the ligand that coordinates to the zinc ion is highlighted.
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dinate geometry with the protein and ligand atoms N,
O, and S within a distance of 1.8–2.7 Å. In zinc contain-
ing metalloprotein–ligand complexes, ligand replaces
water molecule and coordinate bonds to zinc with a spe-
cific functional group in a monodentate or bidentate
fashion with one or two contacts. Generally, these func-
tional groups are hydroxamate, carboxylate, hydrazide,
sulfonamide, phosphinate, thiol, sulfodiimines, and so
forth (see Fig. 1). Apart from the coordinate bonding
with the zinc ion, there occurs a strong hydrogen bond
interaction of these functional groups with the amino
acids in the ZBM and neighboring residues.

Dataset Preparation

Figure 2 describes a general protocol for the prepara-
tion of a metalloprotein–ligand complex in a force field
compatible manner. The protocol is divided into the fol-
lowing steps:

1. Selection of the complex: X-ray coordinates of the com-
plex are extracted from the RCSB61 and crystallo-
graphic water molecules are removed.

2. Derivation of partial atomic charges for the ligand
and the zinc ion: In all the zinc containing metallo-
protein–ligand complexes, the ligand is coordinately
bonded to the zinc ion with one or two coordinate
bonds. Zinc ion has a formal charge of þ2, but due to
the charge transfer from the amino acids and ligand
to the zinc cation, net charge on the zinc ion is
always less than þ2 as shown.21 The protein residues
within the coordinate bond distance (�2.7 Å) of the
zinc ion in each complex are identified. To the result-
ing amino acid residues, ligand, and the zinc ion
motif (ZBM) hydrogen atoms are added. Atoms in the
motif, which are within 2.7 Å distance from the zinc
ion, are kept deprotonated. If an atom has two hydro-
gens connected to it, such as NH2, then the hydrogen
that is nearer to the zinc ion is removed. To deter-
mine the net charge on the ZBM, we adopted a sim-
ple formula:

Net charge on the ZBM ¼ formal charge on each

amino acid residueþ formal charge on the ligand

þ2ðþÞ charge on the zinc ion:

Two types of charge derivation protocols have been
tested in this work. In the first protocol, HF/6-31G*
ab initio level calculations are performed on the motif
using GAMESS66 to obtain the Mulliken charges
(MULL) for the ligand and the zinc ion. In the second
protocol, RESP fitting is applied on the electrostatic
potentials obtained from the HF/6-31G* ab initio cal-
culations to obtain the equivalent partial atomic
charges for the ligand atoms and the zinc ion.

3. Parameter assignment for the protein, the ligand,
and the zinc ion: van der Waals parameters for the
zinc ion are adopted from the work of Stote and Kar-
plus23 [r ¼ 1.95 Å, e ¼ 0.25 (kcal/mol)] and Hoops
et al.21 [r ¼ 1.1 Å, e ¼ 0.0125 (kcal/mol)] and for the
ligand atoms from the GAFF force field.57 Bonded pa-
rameters for the ligand are also adopted from the
GAFF force field. AntechAMBER67 module of
AMBER 868 is used to assign the bonded and the
nonbonded parameters to the ligand atoms. Assign-
ment of force field parameters for the protein
atoms (RESP derived partial atomic charges, van
der Waals, and bonded parameters) is carried out
using the AMBER force field.56 Hydrogen atoms
are added to the protein and the protonation states
of the charged residues inside the active site are
fixed based on the literature for each complex. The
protonation state information was also verified
from LIGPLOT69 of the noncovalent interactions
involving ligand (http://www.ebi.ac.uk/thornton-srv/
databases/pdbsum/).

4. Energy minimization of the complex: Energy mini-
mization of only the hydrogen atom positions using
dielectrics of 1, 80, and sigmoidal is performed
with AMBER 868 suite of programs to remove any
clashes from the structure, since an all atom
energy minimization resulted in the loss of coordi-
nation geometry of the ZBM in the active site. For

TABLE III. A Description of the Zinc Binding Motif (ZBM) for the Five Categories
of Zinc Containing Metalloprotein–Ligand Complexes Studied

Protein

Coordinating residue 1 Coordinating residue 2 Coordinating residue 3
Coordinating

residue 4 (ligand)

Amino
acid

Atom
type

Net
charge

Amino
acid

Atom
type

Net
charge

Amino
acid

Atom
type

Net
charge Atoms

CA HIS NE2 HIS NE2 HIS ND1 N
CPA HIS ND1 0 HIS ND1 0 GLU OE1/OE2/

OE1 and OE2
�1 N/O

MMP HIS NE2 0 HIS NE2 0 HIS NE2 0 O1/O2/O1
and O2/N/S

TL HIS NE2 0 HIS NE2 0 GLU OE1/OE2 �1 O1/O2/O1 and
O2/S/S and O

AD HIS NE2 0 CYS SG �1 CYS SG �1 O
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minimizations, 1000 steps of steepest descent and
1500 steps of conjugate gradient are carried out.

An organizational flowchart is shown in Figure 3,
which describes the different force field parameters and
dielectric treatments tested in this work. The ligand and
the zinc ion in the complex are assigned RESP or Mul-
liken derived partial atomic charges, resulting in two
replicas with different charges for each complex. Protein
atoms are assigned RESP charges from the AMBER
force field. Each complex is then assigned Hoops et al.
or Stote and Karplus van der Waals parameters for the
zinc ion, resulting in four replicas for each complex. Pro-
tein atoms are assigned AMBER and ligand atoms
GAFF force field van der Waals parameters. The four
replicas generated for each complex differ in the force
field parameters assigned. All the four replicas of each
complex are now energy minimized with three different
dielectric models (1, 80, and sigmoidal), resulting in 12
different structures for each complex (1 3 2 3 2 3 3 ¼
12). These structures act as an input for the scoring
function for binding affinity estimations.
The scoring function has two electrostatics terms,

electrostatics I (p � l) and electrostatics II (z � pl), and
each term incorporates a dielectric function to calculate
the electrostatic energy. Three different dielectric mod-

els (1, 80, and sigmoidal) have been tested for electro-
statics I and electrostatics II, resulting in nine different
models of the scoring function. Binding affinity calcula-
tions of 12 energy minimized structures with 9 differ-
ent models of the scoring function gives a total of (12 3
9 ¼ 108) 108 different computational protocols for bind-
ing affinity estimations for each zinc containing metal-
loprotein–ligand complex (system). This process was
repeated for all the 90 systems considered, giving 108
different sets of binding affinities for each system. This
enabled identification of the most suitable and theoreti-
cally consistent computational protocol for predicting
the binding affinities of zinc containing metalloprotein–
ligand complexes.

Fig. 2. A computational flowchart adopted for estimating the binding affinities of zinc containing metallo-
protein–ligand complexes.

Fig. 3. An organizational flowchart showing the different force field
parameters and dielectric functions employed in preparing the zinc con-
taining metalloprotein–ligand complex. The highlighted dotted line path
shows the most successful protocol.
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RESULTS AND DISCUSSION

Validation of the Scoring Function and
the Computational Protocol

A multiple linear regression analysis was performed
on the 108 different sets of binding affinities and each
set contains information on all the 90 complexes consid-
ered.

1. The complexes energy minimized with a dielectric of
80 (36 sets) had a correlation (r) < 0.5 for the pre-
dicted against the experimental binding affinity.

2. The complexes for which the binding affinity was
computed using a dielectric function of 1 or 80 for the
electrostatics I (p � l) (48 sets) had a correlation (r) <
0.6 for the predicted against the experimental binding
affinity.

3. The complexes for which the binding affinity was
computed using a dielectric function of 1 for the elec-
trostatics II (z � pl) (eight sets) had a correlation (r)
< 0.7 for the predicted against the experimental bind-
ing affinity.

After removing all the above 92 sets which had a cor-
relation (r) < 0.7 for the predicted against the experi-
mental binding affinity, we were left with 16 sets of
binding affinities having correlation (r) > 0.7. The
results of these 16 sets are presented in Table IV, show-
ing the effects of variation in the computational protocol
and the scoring function on the correlation (r). Table IV
shows that, RESP and Mulliken (MULL) charges for the
ligand and the zinc ion perform equally well in terms of
the correlation (r) obtained. However, employing RESP
charges for the ligand and the zinc ion makes the meth-
odology more consistent because RESP charges are used
for the protein atoms. The van der Waals parameters

from Stote and Karplus perform better when compared
to Hoops et al. parameters. We found that dielectric of 1
or sigmoidal in minimization, sigmoidal in electrostatics
I (p � l), and sigmoidal or 80 in electrostatics II (z � pl)
when employed results in correlation (r) > 0.8.

Out of these 16 sets, methods II and XVI yield the
highest correlation (r) for the predicted against the ex-
perimental binding affinities for the 90 zinc containing
metalloprotein–ligand complexes out of the 108 different
computational protocols tested in this work. The highest
correlation R2 ¼ 0.83 (r ¼ 0.91) was obtained for the
method XVI where Mulliken charges were used for the
ligand and the zinc ion, RESP charges for the protein
atoms, Stote and Karplus van der Waals parameters for
the zinc ion, dielectric of 1 (vacuum) in energy minimi-
zation, sigmoidal dielectric for electrostatic I (p � l), and
dielectric of 80 for electrostatic II (z � pl). Despite the
high correlation, this methodology is not consistent in
terms of the partial atomic charges and dielectric func-
tion employed for electrostatic calculations.

The most consistent methodology is seen to be method
II, which yields a good correlation of R2 ¼ 0.77 (r ¼ 0.88).
Method II employs RESP charges for the protein, ligand,
and the zinc ion, Stote and Karplus van der Waals param-
eters for the zinc ion and sigmoidal dielectric for energy
minimization, electrostatics I and electrostatics II. In this
work, we propose method II as a theoretically consistent
protocol for predicting the binding affinities of zinc con-
taining metalloprotein–ligand complexes.

Model validation is a crucial aspect of any model de-
velopment technique and establishes its predictive
power. Recent studies70,71 have shown that, in addition
to leave-one-out (LOO) cross-validation (q2) procedure,
validation of the model using an external test set of com-
pounds is necessary. For a robust validation, the train-
ing and test sets must have a uniform distribution of

TABLE IV. Correlation Coefficient (r) Obtained Between the Predicted and Experimental
Binding Affinity for the 16 Different Sets of Methods Tested on the 90 Complex Dataset

Method
Charge

derivation
Zn Van der

Waals parameters
Minimization
dielectric

Electrostatic I
dielectric

Electrostatic II
dielectric r

I RESP Hoops et al. Sigmoidal Sigmoidal Sigmoidal 0.80
II RESP Stote and Karplus Sigmoidal Sigmoidal Sigmoidal 0.88
III RESP Hoops et al. 1 Sigmoidal Sigmoidal 0.80
IV RESP Stote and Karplus 1 Sigmoidal Sigmoidal 0.86
V RESP Hoops et al. Sigmoidal Sigmoidal 80 0.81
VI RESP Stote and Karplus Sigmoidal Sigmoidal 80 0.84
VII RESP Hoops et al. 1 Sigmoidal 80 0.82
VIII RESP Stote and Karplus 1 Sigmoidal 80 0.84
IX Mulliken Hoops et al. Sigmoidal Sigmoidal Sigmoidal 0.78
X Mulliken Stote and Karplus Sigmoidal Sigmoidal Sigmoidal 0.83
XI Mulliken Hoops et al. 1 Sigmoidal Sigmoidal 0.80
XII Mulliken Stote and Karplus 1 Sigmoidal Sigmoidal 0.74
XIII Mulliken Hoops et al. Sigmoidal Sigmoidal 80 0.85
XIV Mulliken Stote and Karplus Sigmoidal Sigmoidal 80 0.87
XV Mulliken Hoops et al. 1 Sigmoidal 80 0.85
XVI Mulliken Stote and Karplus 1 Sigmoidal 80 0.91
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the representative points in the multidimensional de-
scriptor space. In addition, the model should also satisfy
the following conditions:

1. q2 > 0.5
2. R2 > 0.6

3.
ðR2�R2

0
Þ

R2 < 0:1 and 0:85 � K � 1:15

4.
ðR2�R02

0
Þ

R2 < 0:1 and 0:85 � K 0 � 1:15

5. |R0
2 � R0

02| < 0.3

All the above equations have been explained in Table
II of the supplementary information.
Keeping these issues in consideration, we started with

the LOO cross validation procedure to make the training
and test sets of the prepared zinc containing metallopro-
tein–ligand complexes via method II. We used the exper-
imental binding free energy of the complexes as a
descriptor for their uniform distribution across multidi-
mensional descriptor space in the training and test sets.
The dataset is separated into a training set of 40 com-
plexes and a test set of 50 complexes (Tables IA and IB,
Supplemantary Information). The training set of 40 zinc
containing metalloprotein–ligand complexes for method
II gave a correlation coefficient R2 ¼ 0.77 (r ¼ 0.88) for
the predicted against the experimental binding affinities
(see Fig. 4). A graphical residual analysis plot [Fig. S(I)
of the supplementary information] of the standardized
residuals against the experimental binding affinities for
the training set shows a uniform distribution of the
points above and below the base line, suggesting that
the model fits the data well. The five statistical tests
defined earlier in addition to SPRESS and RMSerror were
then performed on the training set of method II. The
results shown in Table V indicate that the scoring func-
tion passes all the validation tests. The final validation
was performed on the external test set of 50 complexes
using the parameters obtained from the training set (Ta-
ble VI). A correlation coefficient of R2 ¼ 0.77 (r ¼ 0.88)
for method II was obtained on the test set (see Fig. 5)
between the experimental and the predicted binding free

energies, indicating the robustness of the computational
protocol, the scoring function, and the regression coeffi-
cients obtained in predicting the binding affinities of
zinc containing metalloprotein–ligand complexes. We
further tested the ability of the scoring function in the
prediction of relative binding affinities of a series of
ligands against the same protein target. From the 50
test set, we selected CA and MMP, which have more
than six distinct ligands. Individual correlation studies
on these groups of complexes show an average correla-
tion coefficient of R2 ¼ 0.77 (r ¼ 0.88). The training and
the test set PDB IDs of the complexes for method II
along with their experimental and predicted binding
free energies and component-wise separation of the
energetics are provided in Tables IA and IB of the sup-
plementary information.

Empirical Parameter (Regression Coefficient)
Analysis

The empirical scoring function for predicting the bind-
ing affinities of zinc metalloproteinases has 25 independ-
ent variables (electrostatics, van der Waals, loss in con-
formational entropy, and 22 atom types for hydrophobic-
ity corresponding to a combined GAFF57 and AMBER
force field56) and therefore 25 empirical parameters (Ta-
ble VI). Figure S(II) (supplementary information) gives a
percentage wise occurrence of each variable in the 90
dataset. Of the 21 atom types (excluding zinc) C3, C4,
C5, H1, H2, H3, N1, N2, O1, and O2 occur in more than
90% of the complexes. HL, N5, N6, and O3 are present
in less than 50% of the complexes. C2, N3, and P are
present in very few complexes (less than 10%).

Although the coefficients are empirical (Table VI), the
model is phenomenological and is in accord with the
thermodynamics of protein–ligand binding. The calcu-
lated ETel and ETvdw have negative signs and their
regression coefficients a and b have positive signs
respectively, indicating a net favorable contribution of
electrostatics and van der Waals towards binding. The
calculated DSCR has a positive sign as expected and its
regression coefficient has negative sign. The result is
that the net loss in conformational entropy of protein
side chains is either zero or marginally favorable to

Fig. 4. Correlation between the predicted and experimental binding
free energies for 40 zinc containing metalloprotein–ligand complexes
for method II (training set).

TABLE V. Statistical Tests and the Values
for the Corresponding Indices for the

Training Set for Method II

Statistical test Method II

q2 0.77
R2 0.77
ðR2�R2

0
Þ

R2 �0.24

ðR2�R02
0
Þ

R2 �0.24

K 1
K0 0.98
|R0

2 � R0
02| 0.0025

SPRESS (kcal/mol) 2.34
RMS error (kcal/mol) �63.1
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binding. The loss in surface area of all the 22 atom types
has a negative sign, indicating that the net loss in sur-
face area is favorable for binding. However, the atomic
desolvation parameters (regression coefficients) for these
atom types have different contributions. Aromatic sp2

carbon, sp3 carbon, hydrogen bonded to nitrogen atom,
hydroxyl group hydrogen, sp nitrogen, and oxygen in

hydroxyl group have a negative desolvation parameter
and all the remaining atom types have a positive desol-
vation parameter, which shows that their desolvation is
favorable for binding. Nitrogen and phosphorous have a
negative sign for the desolvation parameters, indicating
that their desolvation is unfavorable for binding.

Component-Wise Analysis

A component-wise analysis of the predicted binding
affinities obtained using method II was performed for all
the 90 zinc containing metalloprotein–ligand complex
dataset [Fig. S(III), supplementary information]. Figure
S(III) shows the contribution of each component and
their additive sums and their effect on the correlation.
Individually, van der Waals term shows the maximum
correlation of R2 ¼ 0.45 (r ¼ 0.67) against the experi-
mental binding free energies. This suggests that struc-
tural complementarity/packing in particular is an essen-
tial prerequisite for specific binding. Adding electrostatic
contribution to van der Waals component further
increases the correlation to R2 ¼ 0.64 (r ¼ 0.8), suggest-
ing the importance of hydrogen bonding/ionic interac-
tions in providing specificity to the complex formation
Adding hydrophobicity contribution to this further
increases the correlation to R2 ¼ 0.74 (r ¼ 0.86), reflect-

TABLE VI. A Description of the 22 Derived Atom Types With Their
Atomic Desolvation Parameters kcal/mol/Å2 (ADP)

S. No.
Atom type
symbol Description

Parameters
method II

1. C1 sp2 carbonyl 0.1224
2. C2 sp carbon 0.0583
3. C3 sp2 carbon aliphatic 0.0168
4. C4 sp2 carbon aromatic �0.0074
5. C5 sp3 carbon �0.2971
6. HL Halogens (Fl, Cl, Br, I) 0.0018
7. H1 Hydrogen bonded to aliphatic carbon 0.0008
8. H2 Hydrogen bonded to aromatic carbon 0.0030
9. H3 Hydrogen bonded to nitrogen �0.0289

10. H4 Hydroxyl group �0.0072
11. N1 sp2 nitrogen in amide groups 0.0113
12. N2 sp2 nitrogen in aliphatic systems 0.0300
13. N3 sp2 nitrogen in aromatic systems 0.0037
14. N4 sp nitrogen �0.0056
15. N5 sp3 nitrogen 0.0288
16. N6 Amine nitrogen connected to

one or more aromatic rings
0.0111

17. O1 Oxygen with one connected atom 0.0007
18. O2 Oxygen in hydroxyl group �0.0088
19. O3 Ether and ester oxygen 0.0204
20. P Phosphate 0.6386
21. S Sulphur 0.0081
22. Zn Zinc 0.0139
23. a Empirical coefficient for electrostatics 0.2197
24. b Empirical coefficient for van der Waals 0.1984
25. k Empirical coefficient for conformational entropy �0.2916
26. d Constant (Intercept) 0.3292

Empirical regression coefficients for electrostatics (a), van der Waals (b), conformational entropy (k),
and the regression constant (d) are also given for method II.

Fig. 5. Correlation between the predicted and experimental binding
free energies for 50 zinc containing metalloprotein–ligand complexes
for method II (test set).
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ing the importance of hydration effects in protein–ligand
binding. Adding the loss in conformational entropy
increases the correlation to R2 ¼ 0.77 (r ¼ 0.88), reflect-
ing the contribution of loss of protein side chain confor-
mation upon ligand binding. The above results show the
order of importance of each component to the binding
affinity.

Web Server

The empirical/force field based scoring function (1) to-
gether with method II described and analyzed above has
been web enabled for free access at www.scfbio-iitd.
res.in/software/drugdesign/bapplz.jsp as Binding Affinity
Prediction of Protein–Ligand complex containing Zinc
(BAPPL-Z) server, to aid in designing novel ligands for
zinc–metalloproteinases. Input to the server is an energy
minimized zinc containing metalloprotein–ligand com-
plex, minimized using a sigmoidal dielectric. The input
complex has hydrogens added and protonation states
assigned. RESP charges are assigned to the protein,
ligand and the zinc ion. Stote and Karplus van der
Waals parameters are assigned to the zinc ion. AMBER
and GAFF force field van der Waals parameters are
assigned to the protein and the ligand atoms respec-
tively. The server directly computes the binding affinity
of the input complex. Further work on automation of the
structure preparation and parameter assignment is in
progress. The energy minimized atomic coordinates of 90
zinc containing metalloprotein–ligand complexes pre-
pared using method II along with all the parameters for
binding affinity estimates are also made accessible at
the website at www.scfbio-iitd.res.in/software/drugdesign/
bapplzdataset.jsp.

CONCLUSIONS

Often metalloproteinases are included with nonmetal-
loprotein complexes in the validation of scoring func-
tions, but have generally shown a poor agreement with
experiment. Designing a methodology that yields a good
correlation of the predicted binding affinity with the
experiment on a large dataset of zinc containing metallo-
protein–ligand complexes has been a challenging task.
We propose here an empirical free energy function com-
prising contributions from electrostatics, van der Waals,
hydrophobicity, and loss in conformational entropy of
protein side chains. We have examined the sensitivity of
the predicted binding affinities to different choices of
nonbonded van der Waals parameters for zinc ion (Stote
and Karplus, Hoops et al.), partial atomic charges for
the ligand and the zinc ion (Mulliken, RESP), and
dielectric treatments (1, 80, and sigmoidal) in energy
minimization and in calculating the electrostatic contri-
bution to the binding free energy. Based upon the theo-
retical consistency of the protocol and the accuracy of
the results, we propose in this work a computational
methodology for predicting binding affinities of zinc con-
taining metalloprotein–ligand complexes. The proposed
method gives a correlation coefficient R2 ¼ 0.77 (r ¼

0.88) for the predicted binding affinities against the
experiment. Heterogenity of the dataset on which the
protocols have been validated and parameters obtained
promises transferability to systems from different fami-
lies of zinc metalloproteins, with distinct zinc coordina-
tion geometries, different active sites, and a variety of
ligand architectures. An average correlation coefficient
of R2 ¼ 0.77 (r ¼ 0.88) for different ligands against the
same target indicates the ability of the protocol and the
scoring function in predicting relative binding affinities
of ligands. The results suggest that, building ZBM to
derive partial atomic charges for the ligand and the zinc
ion, the nonbonded approach to model zinc ion, correct
protonation states for ligand and protein residues in
the active site, compatibility between the parameters
obtained from GAFF force field for ligand, Stote and
Karplus van der Waals parameters for zinc ion and
AMBER force field for proteins, the dielectric function
employed, the desolvation parameters for each atom
type, and the energy minimization protocol are some of
the important issues which have strengthened the proto-
col and the scoring function in obtaining a good correla-
tion between the experimental and the predicted binding
affinities of zinc–metalloproteinase complexes from
‘‘single-point’’ calculations. Model validation, various sta-
tistical tests, and parameter analysis studies underscore
the predictive ability of the scoring function. The pro-
posed computational methodology is simple and fast and
can be easily implemented in structure-based drug
design to design novel ligands binding to zinc metallo-
proteins.
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